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Rings

This chapter introduces the notion of a ring, more specifically, a commu-
tative ring with unity. The theory of rings provides a useful conceptual
framework for reasoning about a wide class of interesting algebraic struc-
tures. Intuitively speaking, a ring is an algebraic structure with addition
and multiplication operations that behave like we expect addition and mul-
tiplication should. While there is a lot of terminology associated with rings,
the basic ideas are fairly simple.

9.1 Definitions, basic properties, and examples

Definition 9.1. A commutative ring with unity is a set R together with
addition and multiplication operations on R, such that:

(i) the set R under addition forms an abelian group, and we denote the
additive identity by 0R;

(ii) multiplication is associative; that is, for all a, b, c ∈ R, we have
a(bc) = (ab)c;

(iii) multiplication distributes over addition; that is, for all a, b, c ∈ R, we
have a(b+ c) = ab+ ac and (b+ c)a = ba+ ca;

(iv) there exists a multiplicative identity; that is, there exists an element
1R ∈ R, such that 1R · a = a = a · 1R for all a ∈ R;

(v) multiplication is commutative; that is, for all a, b ∈ R, we have ab =
ba.

There are other, more general (and less convenient) types of rings—one
can drop properties (iv) and (v), and still have what is called a ring. We
shall not, however, be working with such general rings in this text. There-
fore, to simplify terminology, from now on, by a “ring,” we shall always
mean a commutative ring with unity.
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Let R be a ring. Notice that because of the distributive law, for any
fixed a ∈ R, the map from R to R that sends b ∈ R to ab ∈ R is a group
homomorphism with respect to the underlying additive group of R. We call
this the a-multiplication map.

We first state some simple facts:

Theorem 9.2. Let R be a ring. Then:

(i) the multiplicative identity 1R is unique;

(ii) 0R · a = 0R for all a ∈ R;

(iii) (−a)b = a(−b) = −(ab) for all a, b ∈ R;

(iv) (−a)(−b) = ab for all a, b ∈ R;

(v) (na)b = a(nb) = n(ab) for all n ∈ Z and a, b ∈ R.

Proof. Part (i) may be proved using the same argument as was used to prove
part (i) of Theorem 8.2. Parts (ii), (iii), and (v) follow directly from parts
(i), (ii), and (iii) of Theorem 8.20, using appropriate multiplication maps,
discussed above. Part (iv) follows from parts (iii) and (iv) of Theorem 8.3.
2

Example 9.1. The set Z under the usual rules of multiplication and addi-
tion forms a ring. 2

Example 9.2. For n ≥ 1, the set Zn under the rules of multiplication and
addition defined in §2.3 forms a ring. 2

Example 9.3. The set Q of rational numbers under the usual rules of
multiplication and addition forms a ring. 2

Example 9.4. The set R of real numbers under the usual rules of multipli-
cation and addition forms a ring. 2

Example 9.5. The set C of complex numbers under the usual rules of mul-
tiplication and addition forms a ring. Any α ∈ C can be written (uniquely)
as α = a+bi, with a, b ∈ R, and i =

√
−1. If α′ = a′+b′i is another complex

number, with a′, b′ ∈ R, then

α+ α′ = (a+ a′) + (b+ b′)i and αα′ = (aa′ − bb′) + (ab′ + a′b)i.

The fact that C is a ring can be verified by direct calculation; however, we
shall see later that this follows easily from more general considerations.

Recall the complex conjugation operation, which sends α to ᾱ := a−
bi. One can verify by direct calculation that complex conjugation is both
additive and multiplicative; that is, α+ α′ = ᾱ+ ᾱ′ and α · α′ = ᾱ · ᾱ′.
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The norm of α is N(α) := αᾱ = a2 + b2. So we see that N(α) is
a non-negative real number, and is zero iff α = 0. Moreover, from the
multiplicativity of complex conjugation, it is easy to see that the norm is
multiplicative as well: N(αα′) = αα′αα′ = αα′ᾱᾱ′ = N(α)N(α′). 2

Example 9.6. Consider the set F of all arithmetic functions, that is, func-
tions mapping positive integers to real numbers. We can define addition
and multiplication operations on F in a natural, point-wise fashion: for
f, g ∈ F , let f + g be the function that sends n to f(n) + g(n), and let
f · g be the function that sends n to f(n)g(n). These operations of addition
and multiplication make F into a ring: the additive identity is the function
that is everywhere 0, and the multiplicative identity is the function that is
everywhere 1.

Another way to make F into a ring is to use the addition operation as
above, together with the Dirichlet product, which we defined in §2.6, for
the multiplication operation. In this case, the multiplicative identity is the
function I that we defined in §2.6, which takes the value 1 at 1 and the value
0 everywhere else. The reader should verify that the distributive law holds.
2

Note that in a ring R, if 1R = 0R, then for all a ∈ R, we have a = 1R ·a =
0R · a = 0R, and hence the ring R is trivial, in the sense that it consists of
the single element 0R, with 0R + 0R = 0R and 0R · 0R = 0R. If 1R 6= 0R, we
say that R is non-trivial. We shall rarely be concerned with trivial rings for
their own sake; however, they do sometimes arise in certain constructions.

If R1, . . . , Rk are rings, then the set of all k-tuples (a1, . . . , ak) with ai ∈ Ri

for i = 1, . . . , k, with addition and multiplication defined component-wise,
forms a ring. The ring is denoted by R1× · · · ×Rk, and is called the direct
product of R1, . . . , Rk.

The characteristic of a ring R is defined as the exponent of the un-
derlying additive group (see §8.5). Note that for m ∈ Z and a ∈ R, we
have

ma = m(1R · a) = (m · 1R)a,

so that if m · 1R = 0R, then ma = 0R for all a ∈ R. Thus, if the additive
order of 1R is infinite, the characteristic of R is zero, and otherwise, the
characteristic of R is equal to the additive order of 1R.

Example 9.7. The ring Z has characteristic zero, Zn has characteristic n,
and Zn1 × Zn2 has characteristic lcm(n1, n2). 2

For elements a, b in a ring R, we say that b divides a, or alternatively,
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that a is divisible by b, if there exists c ∈ R such that a = bc. If b divides
a, then b is called a divisor of a, and we write b | a. Note Theorem 1.1
holds for an arbitrary ring.

When there is no possibility for confusion, one may write “0” instead of
“0R” and “1” instead of “1R.” Also, one may also write, for example, 2R to
denote 2 · 1R, 3R to denote 3 · 1R, and so on; moreover, where the context
is clear, one may use an implicit “type cast,” so that m ∈ Z really means
m · 1R.

For a ∈ R and positive integer n, the expression an denotes the product
a · a · · · · · a, where there are n terms in the product. One may extend this
definition to n = 0, defining a0 to be the multiplicative identity 1R.

Exercise 9.1. Verify the usual “rules of exponent arithmetic” for a ring R.
That is, show that for a ∈ R, and non-negative integers n1, n2, we have

(an1)n2 = an1n2 and an1an2 = an1+n2 .

Exercise 9.2. Show that the familiar binomial theorem holds in an ar-
bitrary ring R; that is, for a, b ∈ R and positive integer n, we have

(a+ b)n =
n∑

i=0

(
n

i

)
an−ibi.

Exercise 9.3. Show that( n∑
i=1

ai

)( m∑
j=1

bj

)
=

n∑
i=1

m∑
j=1

aibj ,

where the ai and bj are elements of a ring R.

9.1.1 Units and fields

Let R be a ring. We call u ∈ R a unit if it divides 1R, that is, if uu′ = 1R

for some u′ ∈ R. In this case, it is easy to see that u′ is uniquely determined,
and it is called the multiplicative inverse of u, and we denote it by u−1.
Also, for a ∈ R, we may write a/u to denote au−1. It is clear that a unit u
divides every a ∈ R.

We denote the set of units by R∗. It is easy to verify that the set R∗

is closed under multiplication, from which it follows that R∗ is an abelian
group, called the multiplicative group of units of R. If u ∈ R∗, then of
course un ∈ R∗ for all non-negative integers n, and the multiplicative inverse
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of un is (u−1)n, which we may also write as u−n (which is consistent with
our notation for abelian groups).

If R is non-trivial and every non-zero element of R has a multiplicative
inverse, then R is called a field.

Example 9.8. The only units in the ring Z are ±1. Hence, Z is not a field.
2

Example 9.9. For positive integer n, the units in Zn are the residue classes
[a]n with gcd(a, n) = 1. In particular, if n is prime, all non-zero residue
classes are units, and if n is composite, some non-zero residue classes are
not units. Hence, Zn is a field if and only if n is prime. Of course, the
notation Z∗n introduced in this section for the group of units of the ring Zn

is consistent with the notation introduced in §2.3. 2

Example 9.10. Every non-zero element of Q is a unit. Hence, Q is a field.
2

Example 9.11. Every non-zero element of R is a unit. Hence, R is a field.
2

Example 9.12. For non-zero α = a + bi ∈ C, with a, b ∈ R, we have c :=
N(α) = a2 + b2 > 0. It follows that the complex number ᾱc−1 = (ac−1) +
(−bc−1)i is the multiplicative inverse of α, since α · ᾱc−1 = (αᾱ)c−1 = 1.
Hence, every non-zero element of C is a unit, and so C is a field. 2

Example 9.13. For rings R1, . . . , Rk, it is easy to see that the multiplicative
group of units of the direct product R1× · · · ×Rk is equal to R∗1× · · · ×R∗k.
Indeed, by definition, (a1, . . . , ak) has a multiplicative inverse if and only if
each individual ai does. 2

Example 9.14. Consider the rings of arithmetic functions defined in Exam-
ple 9.6. If multiplication is defined point-wise, then an arithmetic function f
is a unit if and only if f(n) 6= 0 for all n. If multiplication is defined in terms
of the Dirichlet product, then by the result of Exercise 2.27, an arithmetic
function f is a unit if and only if f(1) 6= 0. 2

9.1.2 Zero divisors and integral domains

Let R be a ring. An element a ∈ R is called a zero divisor if a 6= 0R and
there exists non-zero b ∈ R such that ab = 0R.

If R is non-trivial and has no zero divisors, then it is called an integral
domain. Put another way, a non-trivial ring R is an integral domain if
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and only if the following holds: for all a, b ∈ R, ab = 0R implies a = 0R or
b = 0R.

Note that if u is a unit in R, it cannot be a zero divisor (if ub = 0R, then
multiplying both sides of this equation by u−1 yields b = 0R). In particular,
it follows that any field is an integral domain.

Example 9.15. Z is an integral domain. 2

Example 9.16. For n > 1, Zn is an integral domain if and only if n is
prime. In particular, if n is composite, so n = n1n2 with 1 < n1 < n and
1 < n2 < n, then [n1]n and [n2]n are zero divisors: [n1]n[n2]n = [0]n, but
[n1]n 6= [0]n and [n2]n 6= [0]n. 2

Example 9.17. Q, R, and C are fields, and hence are also integral domains.
2

Example 9.18. For two non-trivial rings R1, R2, an element (a1, a2) ∈
R1 × R2 is a zero divisor if and only if a1 is a zero divisor, a2 is a zero
divisor, or exactly one of a1 or a2 is zero. In particular, R1 × R2 is not an
integral domain. 2

We have the following “cancellation law”:

Theorem 9.3. If R is a ring, and a, b, c ∈ R such that a 6= 0R and a is not
a zero divisor, then ab = ac implies b = c.

Proof. ab = bc implies a(b − c) = 0R. The fact that a 6= 0 and a is not a
zero divisor implies that we must have b− c = 0R, and so b = c. 2

Theorem 9.4. If D is an integral domain, then:
(i) for all a, b, c ∈ D, a 6= 0D and ab = ac implies b = c;
(ii) for all a, b ∈ D, a | b and b | a if and only if a = bc for some c ∈ D∗.
(iii) for all a, b ∈ D with b 6= 0D and b | a, there is a unique c ∈ D such

that a = bc, which we may denote as a/b.

Proof. The first statement follows immediately from the previous theorem
and the definition of an integral domain.

For the second statement, if a = bc for c ∈ D∗, then we also have b = ac−1;
thus, b | a and a | b. Conversely, a | b implies b = ax for x ∈ D, and b | a
implies a = by for y ∈ D, and hence b = bxy. If b = 0R, then the equation
a = by implies a = 0R, and so the statement holds for any c; otherwise,
cancel b, we have 1D = xy, and so x and y are units.

For the third statement, if a = bc and a = bc′, then bc = bc′, and cancel
b. 2
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Theorem 9.5. The characteristic of an integral domain is either zero or a
prime.

Proof. By way of contradiction, suppose that D is an integral domain with
characteristic m that is neither zero nor prime. Since, by definition, D is
not a trivial ring, we cannot have m = 1, and so m must be composite. Say
m = st, where 1 < s < m and 1 < t < m. Since m is the additive order of
1D, it follows that (s · 1D) 6= 0D and (t · 1D) 6= 0D; moreover, since D is an
integral domain, it follows that (s · 1D)(t · 1D) 6= 0D. So we have

0D = m · 1D = (st) · 1D = (s · 1D)(t · 1D) 6= 0D,

a contradiction. 2

Theorem 9.6. Any finite integral domain is a field.

Proof. Let D be a finite integral domain, and let a be any non-zero element
of D. Consider the a-multiplication map that sends b ∈ D to ab, which
is a group homomorphism on the additive group of D. Since a is not a
zero-divisor, it follows that the kernel of the a-multiplication map is {0D},
hence the map is injective, and by finiteness, it must be surjective as well.
In particular, there must be an element b ∈ D such that ab = 1D. 2

Theorem 9.7. Any finite field F must be of cardinality pw, where p is
prime, w is a positive integer, and p is the characteristic of F .

Proof. By Theorem 9.5, the characteristic of F is either zero or a prime,
and since F is finite, it must be prime. Let p denote the characteristic. By
definition, p is the exponent of the additive group of F , and by Theorem 8.42,
the primes dividing the exponent are the same as the primes dividing the
order, and hence F must have cardinality pw for some positive integer w. 2

Of course, for every prime p, Zp is a finite field of cardinality p. As we
shall see later (in Chapter 20), for every prime p and positive integer w,
there exists a field of cardinality pw. Later in this chapter, we shall see some
specific examples of finite fields whose cardinality is not prime (Examples
9.35 and 9.47).

Exercise 9.4. Let R be a ring of characteristic m > 0, and let n be any
integer. Show that:

(a) if gcd(n,m) = 1, then n · 1R is a unit;

(b) if 1 < gcd(n,m) < m, then n · 1R is a zero divisor;

(c) otherwise, n · 1R = 0R.
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Exercise 9.5. Let D be an integral domain, m ∈ Z, and a ∈ D. Show that
ma = 0D if and only if m is a multiple of the characteristic of D or a = 0D.

Exercise 9.6. For n ≥ 1, and for all a, b ∈ Zn, show that if a | b and b | a,
then a = bc for some c ∈ Z∗n. Thus, part (ii) of Theorem 9.4 may hold for
some rings that are not integral domains.

Exercise 9.7. This exercise depends on results in §8.6. Using the funda-
mental theorem of finite abelian groups, show that the additive group of a
finite field of characteristic p and cardinality pw is isomorphic to Z×w

p .

9.1.3 Subrings

Definition 9.8. A subset S of a ring R is called a subring if

(i) S is a subgroup of the additive group R,

(ii) S is closed under multiplication, and

(iii) 1R ∈ S.

It is clear that the operations of addition and multiplication on a ring R
make a subring S of R into a ring, where 0R is the additive identity of S and
1R is the multiplicative identity of S. One may also call R an extension
ring of S.

Some texts do not require that 1R belongs to a subring S, and instead
require only that S contains a multiplicative identity, which may be different
than that of R. This is perfectly reasonable, but for simplicity, we restrict
ourselves to the case when 1R ∈ S.

Expanding the above definition, we see that a subset S of R is a subring
if and only if 1R ∈ S and for all a, b ∈ S, we have

a+ b ∈ S, −a ∈ S, and ab ∈ S.

If fact, to verify that S is a subring, it suffices to show that −1R ∈ S and
that S is closed under addition and multiplication; indeed, if −1R ∈ S and S
is closed under multiplication, then S is closed under negation, and further,
1R = −(−1R) ∈ S.

Example 9.19. Z is a subring of Q. 2

Example 9.20. Q is a subring of R. 2

Example 9.21. R is a subring of C.
Note that for α := a+bi ∈ C, with a, b ∈ R, we have ᾱ = α iff a+bi = a−bi

iff b = 0. That is, ᾱ = α iff α ∈ R. 2
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Example 9.22. The set Z[i] of complex numbers of the form a + bi, with
a, b ∈ Z, is a subring of C. It is called the ring of Gaussian integers.
Since C is a field, it contains no zero divisors, and hence Z[i] contains no
zero divisors. Hence, Z[i] is an integral domain.

Let us determine the units of Z[i]. If α ∈ Z[i] is a unit, then there exists
α′ ∈ Z[i] such that αα′ = 1. Taking norms, we obtain

1 = N(1) = N(αα′) = N(α)N(α′).

Clearly, the norm of a Gaussian integer is a non-negative integer, and so
N(α)N(α′) = 1 implies N(α) = 1. Now, if α = a + bi, with a, b ∈ Z, then
N(α) = a2 + b2, and so N(α) = 1 implies α = ±1 or α = ±i. Conversely, it
is clear that ±1 and ±i are indeed units, and so these are the only units in
Z[i]. 2

Example 9.23. Let m be a positive integer, and let Q(m) be the set of
rational numbers of the form a/b, where a and b are integers, and b is
relatively prime to m. Then Q(m) is a subring of Q, since for any a, b, c, d ∈ Z
with gcd(b,m) = 1 and gcd(d,m) = 1, we have

a

b
+
c

d
=
ad+ bc

bd
and

a

b
· c
d

=
ac

bd
,

and since gcd(bd,m) = 1, it follows that the sum and product of any two
element of Q(m) is again in Q(m). Clearly, Q(m) contains −1, and so it follows
that Q(m) is a subring of Q. The units of Q(m) are precisely those rational
numbers of the form a/b, where gcd(a,m) = gcd(b,m) = 1. 2

Example 9.24. If R and S are non-trivial rings, then R′ := R × {0S}
is not a subring of R × S: although it satisfies the first two requirements
of the definition of a subring, it does not satisfy the third. However, R′

does contain an element that acts as a multiplicative identity of R′, namely
(1R, 0S), and hence could be viewed as a subring of R × S under a more
liberal definition. 2

Theorem 9.9. Any subring of an integral domain is also an integral do-
main.

Proof. If D′ is a subring of the integral domain D, then any zero divisor in
D′ would itself be a zero divisor in D. 2

Note that it is not the case that a subring of a field is always a field: the
subring Z of Q is a counter-example. If F ′ is a subring of a field F , and F ′

is itself a field, then we say that F ′ is a subfield of F , and that F is an
extension field of F ′.
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Example 9.25. Q is a subfield of R, which in turn is a subfield of C. 2

Exercise 9.8. Show that the set Q[i] of complex numbers of the form a+bi,
with a, b ∈ Q, is a subfield of C.

Exercise 9.9. Show that if S and S′ are subrings of R, then so is S ∩ S′.

Exercise 9.10. Let F be the set of all functions f : R → R, and let C be
the subset of F of continuous functions.

(a) Show that with addition and multiplication of functions defined in the
natural, point-wise fashion, F is a ring, but not an integral domain.

(b) Let a, b ∈ F . Show that if a | b and b | a, then there is a c ∈ F∗ such
that a = bc.

(c) Show that C is a subring of F , and show that all functions in C∗ are
either everywhere positive or everywhere negative.

(d) Define a, b ∈ C by a(t) = b(t) = t for t < 0, a(t) = b(t) = 0 for
0 ≤ t ≤ 1, and a(t) = −b(t) = t− 1 for t > 1. Show that in the ring
C, we have a | b and b | a, yet there is no c ∈ C∗ such that a = bc.
Thus, part (ii) of Theorem 9.4 does not hold in a general ring.

9.2 Polynomial rings

If R is a ring, then we can form the ring of polynomials R[X], consisting
of all polynomials a0 + a1X + · · · + akX

k in the indeterminate, or “formal”
variable, X, with coefficients in R, and with addition and multiplication
being defined in the usual way.

Example 9.26. Let us define a few polynomials over the ring Z:

a := 3 + X2, b := 1 + 2X− X3, c := 5, d := 1 + X, e := X, f := 4X3.

We have

a+b = 4+2X+X2−X3, a ·b = 3+6X+X2−X3−X5, cd+ef = 5+5X+4X4. 2

As illustrated in the previous example, elements of R are also polynomials.
Such polynomials are called constant polynomials; all other polynomials
are called non-constant polynomials. The set R of constant polynomials
clearly forms a subring of R[X]. In particular, 0R is the additive identity in
R[X] and 1R is the multiplicative identity in R[X].
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For completeness, we present a more formal definition of the ring R[X].
The reader should bear in mind that this formalism is rather tedious, and
may be more distracting than it is enlightening. It is technically conve-
nient to view a polynomial as having an infinite sequence of coefficients
a0, a1, a2, . . . , where each coefficient belongs to R, but where only a finite
number of the coefficients are non-zero. We may write such a polynomial as
an infinite sum

∑∞
i=0 aiXi; however, this notation is best thought of “syntac-

tic sugar”: there is really nothing more to the polynomial than this sequence
of coefficients. With this notation, if

a =
∞∑
i=0

aiX
i and b =

∞∑
i=0

biX
i,

then

a+ b :=
∞∑
i=0

(ai + bi)Xi, (9.1)

and

a · b :=
∞∑
i=0

( i∑
k=0

akbi−k

)
Xi. (9.2)

We should first verify that these addition and multiplication operations
actually produce coefficient sequences with only a finite number of non-zero
terms. Suppose that for non-negative integers k and `, we have ai = 0R for
all i > k and bi = 0R for all i > `. Then it is clear that the coefficient of Xi

in a+ b is zero for all i > max{k, `}, and it is also not too hard to see that
the coefficient of Xi in a · b is zero for all i > k + `.

We leave it to the reader to verify that R[X], with addition and multipli-
cation defined as above, actually satisfies the definition of a ring — this is
entirely straightforward, but tedious.

For c ∈ R, we may identify c with the polynomial
∑∞

i=0 ciX
i, where c0 = c

and ci = 0R for i > 0. Strictly speaking, c and
∑∞

i=0 ciX
i are not the same

mathematical object, but there will certainly be no possible confusion in
treating them as such. Thus, from a narrow, legalistic point of view, R is
not a subring of R[X], but we shall not let such let such annoying details
prevent us from continuing to speak of it as such. As one last matter of
notation, we may naturally write X to denote the polynomial

∑∞
i=0 aiXi,

where a1 = 1R and ai = 0R for all i 6= 1.
With all of these conventions and definitions, we can return to the prac-

tice of writing polynomials as we did in Example 9.26, without any loss of
precision. Note that by definition, if R is the trivial ring, then so is R[X].
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9.2.1 Polynomials versus polynomial functions

Of course, a polynomial a =
∑k

i=0 aiXi defines a polynomial function on R

that sends α ∈ R to
∑k

i=0 aiα
i, and we denote the value of this function

as a(α). However, it is important to regard polynomials over R as formal
expressions, and not to identify them with their corresponding functions.
In particular, two polynomials are equal if and only if their coefficients are
equal. This distinction is important, since there are rings R over which two
different polynomials define the same function. One can of course define the
ring of polynomial functions on R, but in general, that ring has a different
structure from the ring of polynomials over R.

Example 9.27. In the ring Zp, for prime p, by Fermat’s little theorem
(Theorem 2.16), we have αp − α = [0]p for all α ∈ Zp. But consider the
polynomial a := Xp − X ∈ Zp[X]. We have a(α) = [0]p for all α ∈ Zp, and
hence the function defined by a is the zero function, yet a is definitely not
the zero polynomial. 2

More generally, if R is a subring of a ring E, a polynomial a =
∑k

i=0 aiXi ∈
R[X] defines a polynomial function from E to E that sends α ∈ E to∑k

i=0 aiα
i ∈ E, and the value of this function is denoted a(α).

If E = R[X], then evaluating a polynomial a ∈ R[X] at a point α ∈ E

amounts to polynomial composition. For example, if a = X2 + X then

a
[
X + 1

]
= (X + 1)2 + (X + 1) = X2 + 3X + 2.

A simple, but important, fact is the following:

Theorem 9.10. Let R be a subring of a ring E. For a, b ∈ R[X] and α ∈ E,
if p := ab ∈ R[X] and s := a+ b ∈ R[X], then we have

p(α) = a(α)b(α) and s(α) = a(α) + b(α).

Also, if c ∈ R[X] is a constant polynomial, then c(α) = c for all α ∈ E.

Proof. Exercise. 2

Note that the syntax for polynomial evaluation creates some poten-
tial ambiguities: if a is a polynomial, one could interpret a(b+ c) as
either a times b + c, or a evaluated at b + c; usually, the meaning
will be clear from context, but to avoid such ambiguities, if the in-
tended meaning is the former, we shall generally write this as, say,
a · (b+ c) or (b+ c)a, and if the intended meaning is the latter, we
shall generally write this as a[ b+ c ].
So as to keep the distinction between ring elements and indetermi-
nates clear, we shall use the symbol “X” only to denote the latter.
Also, for a polynomial a ∈ R[X], we shall in general write this simply
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as “a,” and not as “a(X).” Of course, the choice of the symbol “X”
is arbitrary; occasionally, we may use other symbols, such as “Y,” as
alternatives.

9.2.2 Basic properties of polynomial rings

Let R be a ring. For non-zero a ∈ R[X], if a =
∑k

i=0 aiXi with ak 6= 0R,
then we call k the degree of a, denoted deg(a), we call ak the leading
coefficient of a, denoted lc(a), and we call a0 the constant term of a. If
lc(a) = 1R, then a is called monic.

Suppose a =
∑k

i=0 aiXi and b =
∑`

i=0 biX
i are polynomials such that

ak 6= 0R and b` 6= 0R, so that deg(a) = k and lc(a) = ak, and deg(b) = `

and lc(b) = b`. When we multiply these two polynomials, we get

ab = a0b0 + (a0b1 + a1b0)X + · · ·+ akb`X
k+`.

In particular, deg(ab) ≤ deg(a) + deg(b). If either of ak or b` are not zero
divisors, then akb` is not zero, and hence deg(ab) = deg(a) + deg(b). How-
ever, if both ak and b` are zero divisors, then we may have akb` = 0R,
in which case, the product ab may be zero, or perhaps ab 6= 0R but
deg(ab) < deg(a) + deg(b).

Example 9.28. Over the ring Z6, consider the polynomials a := [1] + [2]X
and b = [1] + [3]X. We have ab = [1] + [5]X + [6]X2 = [1] + [5]X. Thus,
deg(ab) = 1 < 2 = deg(a) + deg(b). 2

For the zero polynomial, we establish the following conventions: its leading
coefficient and constant term are defined to be 0R, and its degree is defined
to be −∞. With these conventions, we may succinctly state that

for all a, b ∈ R[X], we have deg(ab) ≤ deg(a) + deg(b), with
equality guaranteed to hold unless the leading coefficients of
both a and b are zero divisors.

In the case where the ring of coefficients is as integral domain, we can say
significantly more:

Theorem 9.11. Let D be an integral domain. Then:

(i) for all a, b ∈ D[X], we have deg(ab) = deg(a) + deg(b);

(ii) D[X] is an integral domain;

(iii) (D[X])∗ = D∗.

Proof. Exercise. 2
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9.2.3 Division with remainder

An extremely important property of polynomials is a division with remainder
property, analogous to that for the integers:

Theorem 9.12 (Division with remainder property). Let R be a ring.
For a, b ∈ R[X] with b 6= 0R and lc(b) ∈ R∗, there exist unique q, r ∈ R[X]
such that a = bq + r and deg(r) < deg(b).

Proof. Consider the set S of polynomials of the form a−zb with z ∈ R[X]. Let
r = a− qb be an element of S of minimum degree. We must have deg(r) <
deg(b), since otherwise, we would have r′ := r− (lc(r) lc(b)−1Xdeg(r)−deg(b)) ·
b ∈ S, and deg(r′) < deg(r), contradicting the minimality of deg(r).

That proves the existence of r and q. For uniqueness, suppose that a =
bq + r and a = bq′ + r′, where deg(r) < deg(b) and deg(r′) < deg(b). This
implies r′ − r = b · (q − q′). However, if q 6= q′, then

deg(b) > deg(r′ − r) = deg(b · (q − q′)) = deg(b) + deg(q − q′) ≥ deg(b),

which is impossible. Therefore, we must have q = q′, and hence r = r′. 2

If a = bq + r as in the above theorem, we define a mod b := r. Clearly,
b | a if and only if a mod b = 0R. Moreover, note that if deg(a) < deg(b),
then q = 0 and r = a; otherwise, if deg(a) ≥ deg(b), then q 6= 0 and
deg(a) = deg(b) + deg(q).

As a consequence of the above theorem, we have:

Theorem 9.13. For a ring R and a ∈ R[X] and α ∈ R, a(α) = 0R if and
only if (X− α) divides a.

Proof. If R is the trivial ring, there is nothing to prove, so assume that R is
non-trivial. Let us write a = (X− α)q + r, with q, r ∈ R[X] and deg(r) < 1,
which means that r ∈ R. Then we have a(α) = (α− α)q(α) + r = r. Thus,
a(α) = 0R if and only if a mod (X−α) = 0R, which holds if and only if X−α
divides a. 2

With R, a, α as in the above theorem, we say that α is a root of a if
a(α) = 0R.

Theorem 9.14. Let D be an integral domain, and let a ∈ D[X], with
deg(a) = k ≥ 0. Then a has at most k roots.

Proof. We can prove this by induction. If k = 0, this means that a is a
non-zero element of D, and so it clearly has no roots.

Now suppose that k > 0. If a has no roots, we are done, so suppose that
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a has a root α. Then we can write a = (X−α)q, where deg(q) = k−1. Now,
for any root β of a with β 6= α, we have 0D = a(β) = (β−α)q(β), and using
the fact that D is an integral domain, we must have q(β) = 0D. Thus, the
only roots of a are α and the roots of q. By induction, q has at most k − 1
roots, and hence a has at most k roots. 2

Theorem 9.14 has many applications, among which is the following beau-
tiful theorem that establishes an important property of the multiplicative
structure of an integral domain:

Theorem 9.15. Let D be an integral domain and G a subgroup of D∗ of
finite order. Then G is cyclic.

Proof. Let n be the order of G, and suppose G is not cyclic. Then by
Theorem 8.40, we have that the exponent m of G is strictly less than n. It
follows that αm = 1D for all α ∈ G. That is, all the elements of G are roots
of the polynomial Xm− 1D ∈ D[X]. But since a polynomial of degree m over
D has at most m roots, this contradicts the fact that m < n. 2

As a special case of Theorem 9.15, we have:

Theorem 9.16. For any finite field F , the group F ∗ is cyclic. In particular,
if p is prime, then Z∗p is cyclic; that is, there is a primitive root modulo p.

Exercise 9.11. LetD be an infinite integral domain, and let a ∈ D[X]. Show
that if a(α) = 0D for all α ∈ D, then a = 0D. Thus, for an infinite integral
domain D, there is a one-to-one correspondence between polynomials over
D and polynomial functions on D.

Exercise 9.12. This exercise develops a message authentication scheme
(see §6.7.2) that allows one to hash long messages using a relatively small
set of hash functions. Let F be a finite field of cardinality q and let t be
a positive integer. Let A := F×t and Z := F . Define a family H of hash
functions from A to Z as follows: let H := {hα,β : α, β ∈ F}, where for all
hα,β ∈ H and all (a1, . . . , at) ∈ A, we define

hα,β(a1, . . . , at) := β +
t∑

i=1

aiα
i ∈ Z.

Show that H is a t/q-forgeable message authentication scheme. (Compare
this with the second pairwise independent family of hash functions discussed
in Example 6.25, which is much larger, but which is only 1/q-forgeable; in
practice, using the smaller family of hash functions with a somewhat higher
forging probability may be a good trade-off.)
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Exercise 9.13. This exercise develops an alternative proof of Theorem 9.15.
Let n be the order of the group. Using Theorem 9.14, show that for all
d | n, there are at most d elements in the group whose multiplicative order
divides d. From this, deduce that for all d | n, the number of elements of
multiplicative order d is either 0 or φ(d). Now use Theorem 2.11 to deduce
that for all d | n (and in particular, for d = n), the number of elements of
multiplicative order d is equal to φ(d).

Exercise 9.14. Let F be a field of characteristic other than 2, so that the
2F 6= 0F . Show that the familiar quadratic formula holds for F . That is,
for a, b, c ∈ F with a 6= 0F , the polynomial f := aX2 + bX + c ∈ F [X] has
a root if and only if there exists z ∈ F such that z2 = d, where d is the
discriminant of f , defined as d := b2 − 4ac, and in this case the roots of f
are

−b± z
2a

.

Exercise 9.15. Let R be a ring, let a ∈ R[X], with deg(a) = k ≥ 0, and let
α be an element of R.

(a) Show that there exists an integer m, with 0 ≤ m ≤ k, and a polyno-
mial q ∈ R[X], such that

a = (X− α)mq and q(α) 6= 0R.

(b) Show that the values m and q in part (a) are uniquely determined
(by a and α).

(c) Show that m > 0 if and only if α is a root of a.

Let mα(a) denote the value m in the previous exercise; for completeness,
one can define mα(a) := ∞ if a is the zero polynomial. If mα(a) > 0, then
α is called a root of a of multiplicity mα(a); if mα(a) = 1, then α is called
a simple root of a, and if mα(a) > 1, then α is called a multiple root of
a.

The following exercise refines Theorem 9.14, taking into account multi-
plicities.

Exercise 9.16. Let D be an integral domain, and let a ∈ D[X], with
deg(a) = k ≥ 0. Show that ∑

α∈D

mα(a) ≤ k.

Exercise 9.17. Let D be an integral domain, let a, b ∈ D[X], and let α ∈ D.
Show that mα(ab) = mα(a) +mα(b).
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Exercise 9.18. Let R be a ring, let a ∈ R[X], with deg(a) = k ≥ 0, let
α ∈ R, and let m := mα(a). Show that if we evaluate a at X + α, we have

a
[
X + α

]
=

k∑
i=m

biX
i,

where bm, . . . , bk ∈ R and bm 6= 0R.

9.2.4 Formal derivatives

Let R be any ring, and let a ∈ R[X] be a polynomial. If a =
∑`

i=0 aiXi, we
define the formal derivative of a as

D(a) :=
∑̀
i=1

iaiX
i−1.

We stress that unlike the “analytical” notion of derivative from calculus,
which is defined in terms of limits, this definition is purely “symbolic.”
Nevertheless, some of the usual rules for derivatives still hold:

Theorem 9.17. Let R be a ring. For all a, b ∈ R[X] and c ∈ R, we have

(i) D(a+ b) = D(a) + D(b);

(ii) D(ca) = cD(a);

(iii) D(ab) = D(a)b+ aD(b).

Proof. Parts (i) and (ii) follow immediately by inspection, but part (iii)
requires some proof. First, note that part (iii) holds trivially if either a or b
are zero, so let us assume that neither are zero.

We first prove part (iii) for monomials, that is, polynomials of the form
cXi for non-zero c ∈ R and i ≥ 0. Suppose a = cXi and b = dXj . If
i = 0, so a = c, then the result follows from part (ii) and the fact that
D(c) = 0; when j = 0, the result holds by a symmetric argument. So
assume that i > 0 and j > 0. Now, D(a) = icXi−1 and D(b) = jdXj−1,
and D(ab) = D(cdXi+j) = (i+ j)cdXi+j−1. The result follows from a simple
calculation.

Having proved part (iii) for monomials, we now prove it in general on
induction on the total number of monomials appearing in a and b. If the
total number is 2, then both a and b are monomials, and we are in the base
case; otherwise, one of a and b must consist of at least two monomials, and
for concreteness, say it is b that has this property. So we can write b = b1+b2,
where both b1 and b2 have fewer monomials than does b. Applying part (i)
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and the induction hypothesis for part (iii), we have

D(ab) = D(ab1 + ab2)

= D(ab1) + D(ab2)

= D(a)b1 + aD(b1) + D(a)b2 + aD(b2)

= D(a) · (b1 + b2) + a · (D(b1) + D(b2))

= D(a) · (b1 + b2) + a ·D(b1 + b2)

= D(a)b+ aD(b). 2

Exercise 9.19. Let R be a ring, let a ∈ R[X], and let α ∈ R be a root of
a. Show that α is a multiple root of a if and only if α is a root of D(a) (see
Exercise 9.15).

Exercise 9.20. Let R be a ring, let a ∈ R[X] with deg(a) = k ≥ 0, and let
α ∈ R. Show that if we evaluate a at X + α, writing

a
[
X + α

]
=

k∑
i=0

biX
i,

with b0, . . . , bk ∈ R, then we have

i! · bi = (Di(a))(α) for i = 0, . . . , k.

Exercise 9.21. Let F be a field such that every non-constant polynomial
a ∈ F [X] has a root α ∈ F . (The field C is an example of such a field, an
important fact which we shall not be proving in this text.) Show that for
every positive integer r that is not a multiple of the characteristic of F , there
exists an element ζ ∈ F ∗ of multiplicative order r, and that every element
in F ∗ whose order divides r is a power of ζ.

9.2.5 Multi-variate polynomials

One can naturally generalize the notion of a polynomial in a single variable
to that of a polynomial in several variables. We discuss these ideas briefly
here—they will play only a minor role in the remainder of the text.

Consider the ring R[X] of polynomials over a ring R. If Y is another indeter-
minate, we can form the ring R[X][Y] of polynomials in Y whose coefficients
are themselves polynomials in X over the ring R. One may write R[X, Y]
instead of R[X][Y]. An element of R[X, Y] is called a bivariate polynomial.
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Consider a typical element a ∈ R[X, Y], which may be written

a =
∑̀
j=0

( k∑
i=0

aijX
i

)
Yj . (9.3)

Rearranging terms, this may also be written as

a =
∑

0≤i≤k
0≤j≤`

aijX
iYj , (9.4)

or as

a =
k∑

i=0

(∑̀
j=0

aijY
j

)
Xj . (9.5)

If a is written as in (9.4), the terms aijXiYj with aij 6= 0R are called
monomials. The total degree of such a monomial aijXiYj is defined to be
i + j, and if a is non-zero, then the total degree of a, denoted Deg(a), is
defined to be the maximum total degree of any monomial appearing in (9.4).
We define the total degree of the zero polynomial to be −∞. The reader
may verify that for any a, b ∈ R[X, Y], we have Deg(ab) ≤ Deg(a) + Deg(b),
while equality holds if R is an integral domain.

When a is written as in (9.5), one sees that we can naturally view a as
an element of R[Y][X], that is, as a polynomial in X whose coefficients are
polynomials in Y . From a strict, syntactic point of view, the rings R[Y][X]
and R[X][Y] are not the same, but there is no harm done in blurring this
distinction when convenient. We denote by degX(a) the degree of a, viewed
as a polynomial in X, and by degY(a) the degree of a, viewed as a polynomial
in Y. Analogously, one can formally differentiate a with respect to either X
or Y, obtaining the “partial” derivatives DX(a) and DY(a).

Example 9.29. Let us illustrate, with a particular example, the three dif-
ferent forms—as in (9.3), (9.4), and (9.5)—of expressing a bivariate poly-
nomial. In the ring Z[X, Y] we have

a = (5X2 − 3X + 4)Y + (2X2 + 1)

= 5X2Y + 2X2 − 3XY + 4Y + 1

= (5Y + 2)X2 + (−3Y)X + (4Y + 1).

We have Deg(a) = 3, degX(a) = 2, and degY(a) = 1. 2

More generally, if X1, . . . , Xn are indeterminates, we can form the ring
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R[X1, . . . , Xn] of multi-variate polynomials in n variables over R. For-
mally, we can think of this ring as R[X1][X2] · · · [Xn]. Any multi-variate poly-
nomial can be expressed uniquely as the sum of monomials of the form
cXe1

1 · · · Xen
n for non-zero c ∈ R and non-negative integers e1, . . . , en; the total

degree of such a monomial is defined to be
∑

i ei, and the total degree of
a multi-variate polynomial a, denoted Deg(a), is defined to be the maxi-
mum degree of its monomials. As above, for a, b ∈ R[X1, . . . , Xn], we have
Deg(ab) ≤ Deg(a) + Deg(b), while equality always holds if R is an integral
domain.

Just as for bivariate polynomials, the order of the indeterminates is not
important, and for any i = 1, . . . , n, one can naturally view any a ∈
R[X1, . . . , Xn] as a polynomial in Xi over the ring R[X1, . . . , Xi−1, Xi+1, . . . , Xn],
and define degXi

(a) to be the degree of a when viewed in this way. Anal-
ogously, one can formally differentiate a with respect to any variable Xi,
obtaining the “partial” derivative DXi(a).

Just as polynomials in a single variable define polynomial functions, so do
polynomials in several variables. If R is a subring of E, a ∈ R[X1, . . . , Xn],
and α = (α1, . . . , αn) ∈ E×n, we define a(α) to be the element of E ob-
tained by evaluating the expression obtained by substituting αi for Xi in a.
Theorem 9.10 carries over directly to the multi-variate case.

Exercise 9.22. Let R be a ring, and let α1, . . . , αn be elements of R. Show
that any polynomial a ∈ R[X1, . . . , Xn] can be expressed as

a = (X1 − α1)q1 + · · ·+ (Xn − αn)qn + r,

where q1, . . . , qn ∈ R[X1, . . . , Xn] and r ∈ R. Moreover, show that the
value of r appearing in such an expression is uniquely determined (by a

and α1, . . . , αn).

Exercise 9.23. This exercise generalizes Theorem 9.14. Let D be an inte-
gral domain, and let a ∈ D[X1, . . . , Xn], with Deg(a) = k ≥ 0. Let T be a
finite subset of D. Show that the number of elements α ∈ T×n such that
a(α) = 0 is at most k|T |n−1.

Exercise 9.24. Let F be a finite field of cardinality q, and let t be a positive
integer. Let A := F×t and Z := F . Use the result of the previous exercise to
construct a family H of hash functions from A to Z that is an O(len(t)/q)-
forgeable message authentication scheme, where logq |H| = len(t) + O(1).
(See §6.7.2 and also Exercise 9.12.)
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9.3 Ideals and quotient rings

Definition 9.18. Let R be a ring. An ideal of R is a subgroup I of the
additive group of R that is closed under multiplication by elements of R, that
is, for all a ∈ I and r ∈ R, we have ar ∈ I.

Expanding the above definition, we see that a non-empty subset I of R is
an ideal of R if and only if for all a, b ∈ I and r ∈ R, we have

a+ b ∈ I, −a ∈ I, and ar ∈ I.

Observe that the condition −a ∈ I is redundant, as it is implied by the
condition ar ∈ I with r = −1R. Note that in the case when R is the ring Z,
this definition of an ideal is consistent with that given in §1.2.

Clearly, {0R} and R are ideals of R. From the fact that an ideal I is
closed under multiplication by elements of R, it is easy to see that I = R if
and only if 1R ∈ I.

Example 9.30. For m ∈ Z, the set mZ is not only a subgroup of the
additive group Z, it is also an ideal of the ring Z. 2

Example 9.31. For m ∈ Z, the set mZn is not only a subgroup of the
additive group Zn, it is also an ideal of the ring Zn. 2

Example 9.32. In the previous two examples, we saw that for some rings,
the notion of an additive subgroup coincides with that of an ideal. Of
course, that is the exception, not the rule. Consider the ring of polynomial
R[X]. Suppose a is a non-zero polynomial in R[X]. The additive subgroup
generated by a consists of polynomials whose degrees are at most that of a.
However, this subgroup is not an ideal, since any ideal containing a must
also contain a · Xi for all i ≥ 0, and must therefore contain polynomials of
arbitrarily high degree. 2

Let a1, . . . , ak be elements of a ring R. Then it is easy to see that the set

a1R+ · · ·+ akR := {a1r1 + · · ·+ akrk : r1, . . . , rk ∈ R}

is an ideal of R, and contains a1, . . . , ak. It is called the ideal of R gener-
ated by a1, . . . , ak. Clearly, any ideal I of R that contains a1, . . . , ak must
contain a1R + · · ·+ akR, and in this sense, a1R + · · ·+ akR is the smallest
ideal of R containing a1, . . . , ak. An alternative notation that is often used
is to write (a1, . . . , ak) to denote the ideal generated by a1, . . . , ak, when the
ring R is clear from context. If an ideal I is of the form aR = {ar : r ∈ R}
for some a ∈ R, then we say that I is a principal ideal.
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Note that if I and J are ideals of a ring R, then so are I + J := {x+ y :
x ∈ I, y ∈ J} and I ∩ J (verify).

Since an ideal I of a ring R is a subgroup of the additive group R, we may
adopt the congruence notation in §8.3, writing a ≡ b (mod I) if and only if
a− b ∈ I.

Note that if I = dR, then a ≡ b (mod I) if and only if d | (a− b), and as a
matter of notation, one may simply write this congruence as a ≡ b (mod d).

Just considering R as an additive group, then as we saw in §8.3, we can
form the additive group R/I of cosets, where (a+ I) + (b+ I) := (a+ b) + I.
By also considering the multiplicative structure of R, we can view R/I as a
ring. To do this, we need the following fact:

Theorem 9.19. Let I be an ideal of a ring R, and let a, a′, b, b′ ∈ R. If
a ≡ a′ (mod I) and b ≡ b′ (mod I), then ab ≡ a′b′ (mod I).

Proof. If a′ = a + x for x ∈ I and b′ = b + y for y ∈ I, then a′b′ =
ab+ay+bx+xy. Since I is closed under multiplication by elements of R, we
see that ay, bx, xy ∈ I, and since it is closed under addition, ay+bx+xy ∈ I.
Hence, a′b′ − ab ∈ I. 2

This theorem is perhaps one of the main motivations for the definition of
an ideal. It allows us to define multiplication on R/I as follows: for a, b ∈ R,

(a+ I) · (b+ I) := ab+ I.

The above theorem is required to show that this definition is unambiguous.
Once that is done, it is straightforward to show that all the properties that
make R a ring are inherited by R/I — we leave the details of this to the
reader. In particular, the multiplicative identity of R/I is the coset 1R + I.
The ring R/I is called the quotient ring or residue class ring of R

modulo I.
Elements of R/I may be called residue classes. As a matter of notation,

for a ∈ R, we define [a]I := a+ I, and if I = dR, we may write this simply
as [a]d. If I is clear from context, we may also just write [a].

Example 9.33. For n ≥ 1, the ring Zn is precisely the quotient ring Z/nZ.
2

Example 9.34. Let f be a monic polynomial over a ring R with deg(f) =
` ≥ 0, and consider the quotient ring E := R[X]/fR[X]. By the division with
remainder property for polynomials (Theorem 9.12), for every a ∈ R[X],
there exists a unique polynomial b ∈ R[X] such that a ≡ b (mod f) and
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deg(b) < `. From this, it follows that every element of E can be written
uniquely as [b]f , where b ∈ R[X] is a polynomial of degree less than `.

The assumption that f is monic may be relaxed a bit: all that really
matters in this example is that the leading coefficient of f is a unit, so that
the division with remainder property applies. Also, note that in this situa-
tion, we will generally prefer the more compact notation R[X]/(f), instead
of R[X]/fR[X]. 2

Example 9.35. Consider the polynomial f := X2 + X + 1 ∈ Z2[X] and the
quotient ring E := Z2[X]/(f). Let us name the elements of E as follows:

00 := [0]f , 01 := [1]f , 10 := [X]f , 11 := [X + 1]f .

With this naming convention, addition of two elements in E corresponds to
just computing the bit-wise exclusive-or of their names. More precisely, the
addition table for E is the following:

+ 00 01 10 11

00 00 01 10 11
01 01 00 11 10
10 10 11 00 01
11 11 10 01 00

Note that 00 acts as the additive identity for E, and that as an additive
group, E is isomorphic to the additive group Z2 × Z2.

As for multiplication in E, one has to compute the product of two poly-
nomials, and then reduce modulo f . For example, to compute 10 · 11, using
the identity X2 ≡ X + 1 (mod f), one sees that

X · (X + 1) ≡ X2 + X ≡ (X + 1) + X ≡ 1 (mod f);

thus, 10 · 11 = 01. The reader may verify the following multiplication table
for E:

· 00 01 10 11

00 00 00 00 00
01 00 01 10 11
10 00 10 11 01
11 00 11 01 10

Observe that 01 acts as the multiplicative identity for E. Notice that every
non-zero element of E has a multiplicative inverse, and so E is in fact a field.
By Theorem 9.16, we know that E∗ must be cyclic (this fact also follows
from Theorem 8.32, and the fact that |E∗| = 3.) Indeed, the reader may
verify that both 10 and 11 have multiplicative order 3.
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This is the first example we have seen of a finite field whose cardinality is
not prime. 2

Exercise 9.25. Let I be an ideal of a ring R, and let x and y be elements
of R with x ≡ y (mod I). Let f ∈ R[X]. Show that f(x) ≡ f(y) (mod I).

Exercise 9.26. Let p be a prime, and consider the ring Q(p) (see Exam-
ple 9.23). Show that any non-zero ideal of Q(p) is of the form (pi), for some
uniquely determined integer i ≥ 0.

Exercise 9.27. Let R be a ring. Show that if I is a non-empty subset
of R[X] that is closed under addition, multiplication by elements of R, and
multiplication by X, then I is an ideal of R[X].

For the following three exercises, we need some definitions. An ideal I of
a ring R is called prime if I ( R and if for all a, b ∈ R, ab ∈ I implies a ∈ I
or b ∈ I. An ideal I of a ring R is called maximal if I ( R and there are
no ideals J of R such that I ( J ( R.

Exercise 9.28. Let R be a ring. Show that:

(a) an ideal I of R is prime if and only if R/I is an integral domain;

(b) an ideal I of R is maximal if and only if R/I is a field;

(c) all maximal ideals of R are also prime ideals.

Exercise 9.29. This exercise explores some examples of prime and maximal
ideals.

(a) Show that in the ring Z, the ideal {0} is prime but not maximal, and
that the maximal ideals are precisely those of the form pZ, where p
is prime.

(b) More generally, show that in an integral domain D, the ideal {0} is
prime, and this ideal is maximal if and only if D is a field.

(c) Show that in the ring F [X, Y], where F is a field, the ideal (X, Y) is
maximal, while the ideals (X) and (Y) are prime, but not maximal.

Exercise 9.30. It is a fact that all non-trivial rings R contain at least one
maximal ideal. Showing this in general requires some fancy set-theoretic
notions. This exercise develops a proof in the case where R is countable
(i.e., finite or countably infinite).

(a) Show that if R is non-trivial but finite, then it contains a maximal
ideal.
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(b) Assume that R is countably infinite, and let a1, a2, a3, . . . be an
enumeration of the elements of R. Define a sequence of ideals
I0, I1, I2, . . . , as follows. Set I0 := {0R}, and for i ≥ 0, define

Ii+1 :=
{
Ii + aiR if Ii + aiR ( R;
Ii otherwise.

Finally, set

I :=
∞⋃
i=0

Ii.

Show that I is a maximal ideal of R. Hint: first show that I is an
ideal; then show that I ( R by assuming that 1R ∈ I and deriving
a contradiction; finally, show that I is maximal by assuming that
for some i = 1, 2, . . . , we have I ( I + aiR ( R, and deriving a
contradiction.

For the following three exercises, we need the following definition: for
subsets X,Y of a ring R, let X · Y denote the set of all finite sums of the
form

x1y1 + · · ·+ x`y` (with xk ∈ X, yk ∈ Y for k = 1, . . . , `, for some ` ≥ 0).

Note that X · Y contains 0R (the “empty” sum, with ` = 0).

Exercise 9.31. Let R be a ring, and S a subset of R. Show that S · R is
an ideal of R, and is the smallest ideal of R containing S.

Exercise 9.32. Let I and J be two ideals of a ring R. Show that:

(a) I · J is an ideal;

(b) if I and J are principal ideals, with I = aR and J = bR, then
I · J = abR, and so is also a principal ideal;

(c) I · J ⊆ I ∩ J ;

(d) if I + J = R, then I · J = I ∩ J .

Exercise 9.33. Let S be a subring of a ring R. Let I be an ideal of R, and
J an ideal of S. Show that:

(a) I ∩ S is an ideal of S, and that (I ∩ S) ·R is an ideal of R contained
in I;

(b) (J ·R) ∩ S is an ideal of S containing J .
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9.4 Ring homomorphisms and isomorphisms

Definition 9.20. A function ρ from a ring R to a ring R′ is called a ring

homomorphism if it is a group homomorphism with respect to the under-
lying additive groups of R and R′, and if in addition,

(i) ρ(ab) = ρ(a)ρ(b) for all a, b ∈ R, and

(ii) ρ(1R) = 1R′.

Expanding the definition, we see that the requirements that ρ must satisfy
in order to be a ring homomorphism are that for all a, b ∈ R, we have
ρ(a + b) = ρ(a) + ρ(b) and ρ(ab) = ρ(a)ρ(b), and that ρ(1R) = 1R′ . Note
that some texts do not require that ρ(1R) = 1R′ .

Since a ring homomorphism ρ from R to R′ is also an additive group
homomorphism, we may also adopt the notation and terminology for image
and kernel, and note that all the results of Theorem 8.20 apply as well here.
In particular, ρ(0R) = 0R′ , ρ(a) = ρ(b) if and only if a ≡ b (mod ker(ρ)),
and ρ is injective if and only if ker(ρ) = {0R}. However, we may strengthen
Theorem 8.20 as follows:

Theorem 9.21. Let ρ : R→ R′ be a ring homomorphism.

(i) For any subring S of R, ρ(S) is a subring of R′.

(ii) For any ideal I of R, ρ(I) is an ideal of img(ρ).

(iii) ker(ρ) is an ideal of R.

(iv) For any ideal I ′ of R′, ρ−1(I ′) is an ideal of R.

Proof. Exercise. 2

Theorems 8.21 and 8.22 have natural ring analogs—one only has to show
that the corresponding group homomorphisms are also ring homomorphisms:

Theorem 9.22. If ρ : R→ R′ and ρ′ : R′ → R′′ are ring homomorphisms,
then so is their composition ρ′ ◦ ρ : R→ R′′.

Proof. Exercise. 2

Theorem 9.23. Let ρi : R→ Ri, for i = 1, . . . , n, be ring homomorphisms.
Then the map ρ : R→ R1 × · · · ×Rn that sends a ∈ R to (ρ1(a), . . . , ρn(a))
is a ring homomorphism.

Proof. Exercise. 2

If a ring homomorphism ρ : R→ R′ is a bijection, then it is called a ring
isomorphism of R with R′. If such a ring isomorphism ρ exists, we say
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that R is isomorphic to R′, and write R ∼= R′. Moreover, if R = R′, then
ρ is called a ring automorphism on R.

Analogous to Theorem 8.24, we have:

Theorem 9.24. If ρ is a ring isomorphism of R with R′, then the inverse
function ρ−1 is a ring isomorphism of R′ with R.

Proof. Exercise. 2

Because of this theorem, if R is isomorphic to R′, we may simply say that
“R and R′ are isomorphic.”

We stress that a ring isomorphism ρ of R with R′ is essentially just a
“renaming” of elements; in particular, ρ maps units to units and zero divisors
to zero divisors (verify); moreover, the restriction of the map ρ to R∗ yields
a group isomorphism of R∗ with (R′)∗ (verify).

An injective ring homomorphism ρ : R → E is called an embedding
of R in E. In this case, img(ρ) is a subring of E and R ∼= img(ρ). If
the embedding is a natural one that is clear from context, we may simply
identify elements of R with their images in E under the embedding, and as
a slight abuse of terminology, we shall say that R as a subring of E.

We have already seen an example of this, namely, when we formally de-
fined the ring of polynomials R[X] over R, we defined the map ρ : R→ R[X]
that sends c ∈ R to the polynomial whose constant term is c, and all other
coefficients zero. This map ρ is clearly an embedding, and it was via this
embedding that we identified elements of R with elements of R[X], and so
viewed R as a subring of R[X].

This practice of identifying elements of a ring with their images in another
ring under a natural embedding is very common. We shall see more examples
of this later (in particular, Example 9.43 below).

Theorems 8.25, 8.26, and 8.27 also have natural ring analogs—again, one
only has to show that the corresponding group homomorphisms are also ring
homomorphisms:

Theorem 9.25. If I is an ideal of a ring R, then the natural map ρ : R→
R/I given by ρ(a) = a+ I is a surjective ring homomorphism whose kernel
is I.

Proof. Exercise. 2

Theorem 9.26. Let ρ be a ring homomorphism from R into R′. Then the
map ρ̄ : R/ ker(ρ) → img(ρ) that sends the coset a + ker(ρ) for a ∈ R to
ρ(a) is unambiguously defined and is a ring isomorphism of R/ ker(ρ) with
img(ρ).
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Proof. Exercise. 2

Theorem 9.27. Let ρ be a ring homomorphism from R into R′. Then
for any ideal I contained in ker(ρ), the map ρ̄ : R/I → img(ρ) that sends
the coset a + I for a ∈ R to ρ(a) is unambiguously defined and is a ring
homomorphism from R/I onto img(ρ) with kernel ker(ρ)/I.

Proof. Exercise. 2

Example 9.36. For n ≥ 1, the natural map ρ from Z to Zn sends a ∈ Z
to the residue class [a]n. In Example 8.41, we noted that this is a surjective
group homomorphism on the underlying additive groups, with kernel nZ;
however, this map is also a ring homomorphism. 2

Example 9.37. As we saw in Example 8.42, if n1, . . . , nk are pairwise
relatively prime, positive integers, then the map from Z to Zn1×· · ·×Znk

that
sends x ∈ Z to ([x]n1 , . . . , [x]nk

) is a surjective group homomorphism on the
underlying additive groups, with kernel nZ, where n =

∏k
i=1 ni. However,

this map is also a ring homomorphism (this follows from Example 9.36 and
Theorem 9.23). Therefore, by Theorem 9.26, the map that sends [x]n ∈
Zn to ([x]n1 , . . . , [x]nk

) is a ring isomorphism of the ring Zn with the ring
Zn1 × · · · × Znk

. It follows that the restriction of this map to Z∗n yields a
group isomorphism of the multiplicative groups Z∗n and Z∗n1

× · · · ×Z∗nk
(see

Example 9.13). 2

Example 9.38. As we saw in Example 8.43, if n1, n2 are positive integers
with n1 > 1 and n1 | n2, then the map ρ̄ : Zn2 → Zn1 that sends [a]n2 to
[a]n1 is a surjective group homomorphism on the underlying additive groups
with kernel n1Zn2 . This map is also a ring homomorphism. The map ρ̄

can also be viewed as the map obtained by applying Theorem 9.27 with the
natural map ρ from Z to Zn1 and the ideal n2Z of Z, which is contained in
ker(ρ) = n1Z. 2

Example 9.39. Let R be a subring of a ring E, and fix α ∈ E. The
polynomial evaluation map ρ : R[X]→ E that sends a ∈ R[X] to a(α) ∈ E
is a ring homomorphism from R[X] into E (see Theorem 9.10). The image
of ρ consists of all polynomial expressions in α with coefficients in R, and is
denoted R[α]. Note that R[α] is a subring of E containing R ∪ {α}, and is
the smallest such subring of E. 2

Example 9.40. We can generalize the previous example to multi-variate
polynomials. If R is a subring of a ring E and α1, . . . , αn ∈ E, then the
map ρ : R[X1, . . . , Xn] → E that sends a ∈ R[X1, . . . , Xn] to a(α1, . . . , αn) is
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a ring homomorphism. Its image consists of all polynomial expressions in
α1, . . . , αn with coefficients in R, and is denoted R[α1, . . . , αn]. Moreover,
this image is a subring of E containing R∪{α1, . . . , αn}, and is the smallest
such subring of E. 2

Example 9.41. For any ring R, consider the map ρ : Z → R that sends
m ∈ Z to m · 1R in R. This is clearly a ring homomorphism (verify). If
ker(ρ) = {0}, then img(ρ) ∼= Z, and so the ring Z is embedded in R, and
R has characteristic zero. If ker(ρ) = nZ for n > 0, then img(ρ) ∼= Zn, and
so the ring Zn is embedded in R, and R has characteristic n. Note that we
have n = 1 if and only if R is trivial.

Note that img(ρ) is the smallest subring of R; indeed, since any subring
of R must contain 1R and be closed under addition and subtraction, it must
contain img(ρ). 2

Example 9.42. Let R be a ring of prime characteristic p. For any a, b ∈ R,
we have (see Exercise 9.2)

(a+ b)p =
p∑

k=0

(
p

k

)
ap−kbk.

However, by Exercise 1.12, all of the binomial coefficients are multiples of
p, except for k = 0 and k = p, and hence in the ring R, all of these terms
vanish, leaving us with

(a+ b)p = ap + bp.

This result is often jokingly referred to as the “freshman’s dream,” for some-
what obvious reasons.

Of course, as always, we have

(ab)p = apbp and 1p
R = 1R,

and so it follows that the map ρ : R → R that sends a ∈ R to ap is a
ring homomorphism. It also immediately follows that for any integer e ≥ 1,
the e-fold composition ρe : R → R that sends a ∈ R to ape

is also a ring
homomorphism. 2

Example 9.43. As in Example 9.34, let f be a monic polynomial over a
ring R with deg(f) = `, but now assume that ` > 0. Consider the natural
map ρ from R[X] to the quotient ring E := R[X]/(f) that sends a ∈ R[X] to
[a]f . If we restrict ρ to the subring R of R[X], we obtain an embedding of R
into E. Since this is a very natural embedding, one usually simply identifies
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elements of R with their images in E under ρ, and regards R as a subring
of E. Taking this point of view, we see that if a =

∑
i aiXi, then

[a]f = [
∑

i

aiX
i]f =

∑
i

ai([X]f )i = a(η),

where η := [X]f ∈ E. Therefore, the map ρ may be viewed as the polynomial
evaluation map, as in Example 9.39, that sends a ∈ R[X] to a(η) ∈ E. Note
that we have E = R[η]; moreover, every element of E can be expressed
uniquely as b(η) for some b ∈ R[X] of degree less than `, and more generally,
for arbitrary a, b ∈ R[X], we have a(η) = b(η) if and only if a ≡ b (mod f).
2

Example 9.44. As a special case of Example 9.43, let f := X2 + 1 ∈ R[X],
and consider the quotient ring R[X]/(f). If we set i := [X]f ∈ R[X]/(f), then
every element of R[X]/(f) can be expressed uniquely as a+bi, where a, b ∈ R.
Moreover, we have i2 = −1, and more generally, for a, b, a′, b′ ∈ R, we have

(a+ bi) + (a′ + b′i) = (a+ a′) + (b+ b′)i

and

(a+ bi) · (a′ + b′i) = (aa′ − bb′) + (ab′ + a′b)i.

Thus, the rules for arithmetic in R[X]/(f) are precisely the familiar rules of
complex arithmetic, and so C and R[X]/(f) are essentially the same, as rings.
Indeed, the “algebraically correct” way of defining the complex numbers C
is simply to define them to be the quotient ring R[X]/(f) in the first place.
This will be our point of view from now on. 2

Example 9.45. Consider the polynomial evaluation map ρ : R[X] → C =
R[X]/(X2 + 1) that sends g ∈ R[X] to g(−i). For any g ∈ R[X], we may write
g = (X2 + 1)q + a + bX, where q ∈ R[X] and a, b ∈ R. Since (−i)2 + 1 =
i2 + 1 = 0, we have g(−i) = ((−i)2 + 1)q(−i) + a − bi = a − bi. Clearly,
then, ρ is surjective and the kernel of ρ is the ideal of R[X] generated by the
polynomial X2 + 1. By Theorem 9.26, we therefore get a ring automorphism
ρ̄ on C that sends a + bi ∈ C to a− bi. In fact, ρ̄ it is none other than the
complex conjugation map. Indeed, this is the “algebraically correct” way of
defining complex conjugation in the first place. 2

Example 9.46. We defined the ring Z[i] of Gaussian integers in Exam-
ple 9.22 as a subring of C. Let us verify that the notation Z[i] introduced in
Example 9.22 is consistent with that introduced in Example 9.39. Consider
the polynomial evaluation map ρ : Z[X]→ C that sends g ∈ Z[X] to g(i) ∈ C.
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For any g ∈ Z[X], we may write g = (X2 + 1)q + a+ bX, where q ∈ Z[X] and
a, b ∈ Z. Since i2 + 1 = 0, we have g(i) = (i2 + 1)q(i) + a + bi = a + bi.
Clearly, then, the image of ρ is the set {a+ bi : a, b ∈ Z}, and the kernel of
ρ is the ideal of Z[X] generated by the polynomial X2 + 1. This shows that
Z[i] in Example 9.22 is the same as Z[i] in Example 9.39, and moreover,
Theorem 9.26 implies that Z[i] is isomorphic to Z[X]/(X2 + 1).

Thus, we can directly construct the Gaussian integers as the quotient ring
Z[X]/(X2 + 1). Likewise the field Q[i] (see Exercise 9.8) can be constructed
directly as Q[X]/(X2 + 1). Such direct constructions are appealing in that
they are purely “elementary,” as they do not appeal to anything so “sophis-
ticated” as the real numbers. 2

Example 9.47. Let p be a prime, and consider the quotient ring E :=
Zp[X]/(X2 + 1). If we set i := [X]X2+1 ∈ E, then E = Zp[i] = {a + bi : a, b ∈
Zp}. In particular, E is a ring of cardinality p2. Moreover, the rules for
addition and multiplication in E look exactly the same as they do in C: for
a, b, a′, b′ ∈ Zp, we have

(a+ bi) + (a′ + b′i) = (a+ a′) + (b+ b′)i

and

(a+ bi) · (a′ + b′i) = (aa′ − bb′) + (ab′ + a′b)i.

Note that E may or may not be a field.
On the one hand, suppose that c2 = −1 for some c ∈ Zp (for example,

p = 2, p = 5, p = 13). Then (c+ i)(c− i) = c2 + 1 = 0, and so E is not an
integral domain.

On the other hand, suppose there is no c ∈ Zp such that c2 = −1 (for
example, p = 3, p = 7). Then for any a, b ∈ Zp, not both zero, we must have
a2 + b2 6= 0; indeed, suppose that a2 + b2 = 0, and that, say, b 6= 0; then
we would have (a/b)2 = −1, contradicting the assumption that −1 has no
square root in Zp. Since Zp is a field, it follows that the same formula for
multiplicative inverses in C applies in E, namely,

(a+ bi)−1 =
a− bi
a2 + b2

.

This construction provides us with more examples of finite fields whose
cardinality is not prime. 2

Example 9.48. If ρ : R→ R′ is a ring homomorphism, then we can extend
ρ in a natural way to a ring homomorphism from R[X] to R′[X], by defining
ρ(

∑
i aiXi) :=

∑
i ρ(ai)Xi. We leave it to the reader to verify that this indeed

is a ring homomorphism. 2
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Exercise 9.34. Verify that the “is isomorphic to” relation on rings is an
equivalence relation; that is, for all rings R1, R2, R3, we have:

(a) R1
∼= R1;

(b) R1
∼= R2 implies R2

∼= R1;

(c) R1
∼= R2 and R2

∼= R3 implies R1
∼= R3.

Exercise 9.35. Let R1, R2 be rings, and let ρ : R1 ×R2 → R1 be the map
that sends (a1, a2) ∈ R1 × R2 to a1 ∈ R1. Show that ρ is a surjective ring
homomorphism whose kernel is {0R1} ×R2.

Exercise 9.36. Let ρ be a ring homomorphism from R into R′. Show that
the ideals of R containing ker(ρ) are in one-to-one correspondence with the
ideals of img(ρ), where the ideal I of R containing ker(ρ) corresponds to the
ideal ρ(I) of img(ρ).

Exercise 9.37. Let ρ : R → S be a ring homomorphism. Show that
ρ(R∗) ⊆ S∗, and that the restriction of ρ toR∗ yields a group homomorphism
ρ∗ : R∗ → S∗ whose kernel is (1R + ker(ρ)) ∩R∗.

Exercise 9.38. Show that if F is a field, then the only ideals of F are {0F }
and F . From this, conclude the following: if ρ : F → R is a ring homomor-
phism from F into a non-trivial ring R, then ρ must be an embedding.

Exercise 9.39. Let n be a positive integer.

(a) Show that the rings Z[X]/(n) and Zn[X] are isomorphic.

(b) Assuming that n = pq, where p and q are distinct primes, show that
the rings Zn[X] and Zp[X]× Zq[X] are isomorphic.

Exercise 9.40. Let n be a positive integer, let f ∈ Z[X] be a monic poly-
nomial, and let f̄ be the image of f in Zn[X] (i.e., f̄ is obtained by applying
the natural map from Z to Zn coefficient-wise to f). Show that the rings
Z[X]/(n, f) and Zn[X]/(f̄) are isomorphic.

Exercise 9.41. Let R be a ring, and let α1, . . . , αn be elements of R. Show
that the rings R and R[X1, . . . , Xn]/(X1 − α1, . . . , Xn − αn) are isomorphic.

Exercise 9.42. Let ρ : R → R′ be a ring homomorphism, and suppose
that we extend ρ, as in Example 9.48, to a ring homomorphism from R[X]
to R′[X]. Show that for any a ∈ R[X], we have D(ρ(a)) = ρ(D(a)), where
D(·) denotes the formal derivative.

Exercise 9.43. This exercise and the next generalize the Chinese remainder
theorem to arbitrary rings. Suppose I and J are two ideals of a ring R such



9.4 Ring homomorphisms and isomorphisms 243

that I + J = R. Show that the map ρ : R → R/I × R/J that sends a ∈ R
to ([a]I , [a]J) is a surjective ring homomorphism with kernel I ·J . Conclude
that R/(I · J) is isomorphic to R/I ×R/J .

Exercise 9.44. Generalize the previous exercise, showing that R/(I1 · · · Ik)
is isomorphic to R/I1 × · · · × R/Ik, where R is a ring, and I1, . . . , Ik are
ideals of R, provided Ii + Ij = R for all i, j such that i 6= j.

Exercise 9.45. Let F be a field and let d be an element of F that is not a
perfect square (i.e., there does not exist e ∈ F such that e2 = d). Let E :=
F [X]/(X2 − d), and let η := [X]X2−d, so that E = F [η] = {a+ bη : a, b ∈ F}.

(a) Show that the quotient ring E is a field, and write down the formula
for the inverse of a+ bη ∈ E.

(b) Show that the map that sends a + bη ∈ E to a − bη is a ring auto-
morphism on E.

Exercise 9.46. Let Q(m) be the subring of Q defined in Example 9.23. Let
us define the map ρ : Q(m) → Zm as follows. For a/b ∈ Q with b relatively
prime to m, ρ(a/b) := [a]m([b]m)−1. Show that ρ is unambiguously defined,
and is a surjective ring homomorphism. Also, describe the kernel of ρ.

Exercise 9.47. Let ρ : R → R′ be a map from a ring R to a ring R′ that
satisfies all the requirements of a ring homomorphism, except that we do
not require that ρ(1R) = 1R′ .

(a) Give a concrete example of such a map ρ, such that ρ(1R) 6= 1R′ and
ρ(1R) 6= 0R′ .

(b) Show that img(ρ) is a ring in which ρ(1R) plays the role of the mul-
tiplicative identity.

(c) Show that if R′ is an integral domain, and ρ(1R) 6= 0R′ , then ρ(1R) =
1R′ , and hence ρ satisfies our definition of a ring homomorphism.

(d) Show that if ρ is surjective, then ρ(1R) = 1R′ , and hence ρ satisfies
our definition of a ring homomorphism.


